Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Mol Life Sci ; 81(1): 36, 2024 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-38214768

RESUMO

N-methyl-D-aspartate receptors (NMDARs) play a critical role in normal brain function, and variants in genes encoding NMDAR subunits have been described in individuals with various neuropsychiatric disorders. We have used whole-cell patch-clamp electrophysiology, fluorescence microscopy and in-silico modeling to explore the functional consequences of disease-associated nonsense and frame-shift variants resulting in the truncation of GluN2A or GluN2B C-terminal domain (CTD). This study characterizes variant NMDARs and shows their reduced surface expression and synaptic localization, altered agonist affinity, increased desensitization, and reduced probability of channel opening. We also show that naturally occurring and synthetic steroids pregnenolone sulfate and epipregnanolone butanoic acid, respectively, enhance NMDAR function in a way that is dependent on the length of the truncated CTD and, further, is steroid-specific, GluN2A/B subunit-specific, and GluN1 splice variant-specific. Adding to the previously described effects of disease-associated NMDAR variants on the receptor biogenesis and function, our results improve the understanding of the molecular consequences of NMDAR CTD truncations and provide an opportunity for the development of new therapeutic neurosteroid-based ligands.


Assuntos
Neuroesteroides , Receptores de N-Metil-D-Aspartato , Humanos , Fenômenos Eletrofisiológicos , Receptores de N-Metil-D-Aspartato/genética , Receptores de N-Metil-D-Aspartato/metabolismo
2.
ACS Chem Neurosci ; 14(10): 1870-1883, 2023 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-37126803

RESUMO

Multiple molecular targets have been identified to mediate membrane-delimited and nongenomic effects of natural and synthetic steroids, but the influence of steroid metabolism on neuroactive steroid signaling is not well understood. To begin to address this question, we set out to identify major metabolites of a neuroprotective synthetic steroid 20-oxo-5ß-pregnan-3α-yl l-glutamyl 1-ester (pregnanolone glutamate, PAG) and characterize their effects on GABAA and NMDA receptors (GABARs, NMDARs) and their influence on zebrafish behavior. Gas chromatography-mass spectrometry was used to assess concentrations of PAG and its metabolites in the hippocampal tissue of juvenile rats following intraperitoneal PAG injection. PAG is metabolized in the peripheral organs and nervous tissue to 20-oxo-17α-hydroxy-5ß-pregnan-3α-yl l-glutamyl 1-ester (17-hydroxypregnanolone glutamate, 17-OH-PAG), 3α-hydroxy-5ß-pregnan-20-one (pregnanolone, PA), and 3α,17α-dihydroxy-5ß-pregnan-20-one (17-hydroxypregnanolone, 17-OH-PA). Patch-clamp electrophysiology experiments in cultured hippocampal neurons demonstrate that PA and 17-OH-PA are potent positive modulators of GABARs, while PAG and 17-OH-PA have a moderate inhibitory effect at NMDARs. PAG, 17-OH-PA, and PA diminished the locomotor activity of zebrafish larvae in a dose-dependent manner. Our results show that PAG and its metabolites are potent modulators of neurotransmitter receptors with behavioral consequences and indicate that neurosteroid-based ligands may have therapeutic potential.


Assuntos
Pregnanolona , Receptores de N-Metil-D-Aspartato , Ratos , Animais , Pregnanolona/farmacologia , Pregnanolona/química , Peixe-Zebra , Ácido Glutâmico , Ésteres , Ácido gama-Aminobutírico , Receptores de GABA-A
3.
Br J Pharmacol ; 179(15): 3970-3990, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35318645

RESUMO

BACKGROUND AND PURPOSE: N-methyl-D-aspartate receptors (NMDARs) play a critical role in synaptic plasticity, and mutations in human genes encoding NMDAR subunits have been described in individuals with various neuropsychiatric disorders. Compounds with a positive allosteric effect are thought to compensate for reduced receptor function. EXPERIMENTAL APPROACH: We have used whole-cell patch-clamp electrophysiology on recombinant rat NMDARs and human variants found in individuals with neuropsychiatric disorders, in combination with in silico modelling, to explore the site of action of novel epipregnanolone-based NMDAR modulators. KEY RESULTS: Analysis of the action of 4-(20-oxo-5ß-pregnan-3ß-yl) butanoic acid (EPA-But) at the NMDAR indicates that the effect of this steroid with a "bent" structure is different from that of cholesterol and oxysterols and shares a disuse-dependent mechanism of NMDAR potentiation with the "planar" steroid 20-oxo-pregn-5-en-3ß-yl sulfate (PE-S). The potentiating effects of EPA-But and PE-S are additive. Alanine scan mutagenesis identified residues that reduce the potentiating effect of EPA-But. No correlation was found between the effects of EPA-But and PE-S at mutated receptors that were less sensitive to either steroid. The relative degree of potentiation induced by the two steroids also differed in human NMDARs carrying rare variants of hGluN1 or hGluN2B subunits found in individuals with neuropsychiatric disorders, including intellectual disability, epilepsy, developmental delay, and autism spectrum disorder. CONCLUSION AND IMPLICATIONS: Our results show novel sites of action for pregnanolones at the NMDAR and provide an opportunity for the development of new therapeutic neurosteroid-based ligands to treat diseases associated with glutamatergic system hypofunction.


Assuntos
Transtorno do Espectro Autista , Receptores de N-Metil-D-Aspartato , Animais , Mutação , Pregnanos/farmacologia , Ratos , Receptores de N-Metil-D-Aspartato/genética , Esteroides
4.
Br J Pharmacol ; 179(1): 65-83, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34519023

RESUMO

BACKGROUND AND PURPOSE: Deschloroketamine (DCK), a structural analogue of ketamine, has recently emerged on the illicit drug market as a recreational drug with a modestly long duration of action. Despite it being widely used by recreational users, no systematic research on its effects has been performed to date. EXPERIMENTAL APPROACH: Pharmacokinetics, acute effects, and addictive potential in a series of behavioural tests in Wistar rats were performed following subcutaneous (s.c.) administration of DCK (5, 10, and 30 mg·kg-1 ) and its enantiomers S-DCK (10 mg·kg-1 ) and R-DCK (10 mg·kg-1 ). Additionally, activity at human N-methyl-d-aspartate (NMDA) receptors was also evaluated. KEY RESULTS: DCK rapidly crossed the blood brain barrier, with maximum brain levels achieved at 30 min and remaining high at 2 h after administration. Its antagonist activity at NMDA receptors is comparable to that of ketamine with S-DCK being more potent. DCK had stimulatory effects on locomotion, induced place preference, and robustly disrupted PPI. Locomotor stimulant effects tended to disappear more quickly than disruptive effects on PPI. S-DCK had more pronounced stimulatory properties than its R-enantiomer. However, the potency in disrupting PPI was comparable in both enantiomers. CONCLUSION AND IMPLICATIONS: DCK showed similar behavioural and addictive profiles and pharmacodynamics to ketamine, with S-DCK being in general more active. It has a slightly slower pharmacokinetic profile than ketamine, which is consistent with its reported longer duration of action. These findings have implications and significance for understanding the risks associated with illicit use of DCK.


Assuntos
Comportamento Animal , Drogas Ilícitas , Ketamina , Locomoção , Animais , Comportamento Animal/efeitos dos fármacos , Drogas Ilícitas/efeitos adversos , Drogas Ilícitas/farmacocinética , Drogas Ilícitas/farmacologia , Ketamina/administração & dosagem , Ketamina/efeitos adversos , Ketamina/análogos & derivados , Ketamina/farmacocinética , Ketamina/farmacologia , Locomoção/efeitos dos fármacos , Ratos , Ratos Wistar , Receptores de N-Metil-D-Aspartato/metabolismo
5.
Br J Pharmacol ; 178(19): 3888-3904, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-33988248

RESUMO

BACKGROUND AND PURPOSE: Neurosteroids influence neuronal function and have multiple promising clinical applications. Direct modulation of postsynaptic neurotransmitter receptors by neurosteroids is well characterized, but presynaptic effects remain poorly understood. Here, we report presynaptic glutamate release potentiation by neurosteroids pregnanolone and pregnanolone sulfate and compare their mechanisms of action to phorbol 12,13-dibutyrate (PDBu), a mimic of the second messenger DAG. EXPERIMENTAL APPROACH: We use whole-cell patch-clamp electrophysiology and pharmacology in rat hippocampal microisland cultures and total internal reflection fluorescence (TIRF) microscopy in HEK293 cells expressing GFP-tagged vesicle priming protein Munc13-1, to explore the mechanisms of neurosteroid presynaptic modulation. KEY RESULTS: Pregnanolone sulfate and pregnanolone potentiate glutamate release downstream of presynaptic Ca2+ influx, resembling the action of a phorbol ester PDBu. PDBu partially occludes the effect of pregnanolone, but not of pregnanolone sulfate. Calphostin C, an inhibitor that disrupts DAG binding to its targets, reduces the effect PDBu and pregnanolone, but not of pregnanolone sulfate, suggesting that pregnanolone might interact with a well-known DAG/phorbol ester target Munc13-1. However, TIRF microscopy experiments found no evidence of pregnanolone-induced membrane translocation of GFP-tagged Munc13-1, suggesting that pregnanolone may regulate Munc13-1 indirectly or interact with other DAG targets. CONCLUSION AND IMPLICATIONS: We describe a novel presynaptic effect of neurosteroids pregnanolone and pregnanolone sulfate to potentiate glutamate release downstream of presynaptic Ca2+ influx. The mechanism of action of pregnanolone, but not of pregnanolone sulfate, partly overlaps with that of PDBu. Presynaptic effects of neurosteroids may contribute to their therapeutic potential in the treatment of disorders of the glutamate system.


Assuntos
Neuroesteroides , Pregnanolona , Animais , Ácido Glutâmico , Células HEK293 , Humanos , Pregnanolona/farmacologia , Ratos , Sulfatos
6.
J Neurosci ; 41(10): 2119-2134, 2021 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-33526476

RESUMO

NMDARs are ligand-gated ion channels that cause an influx of Na+ and Ca2+ into postsynaptic neurons. The resulting intracellular Ca2+ transient triggers synaptic plasticity. When prolonged, it may induce excitotoxicity, but it may also activate negative feedback to control the activity of NMDARs. Here, we report that a transient rise in intracellular Ca2+ (Ca2+ challenge) increases the sensitivity of NMDARs but not AMPARs/kainate receptors to the endogenous inhibitory neurosteroid 20-oxo-5ß-pregnan-3α-yl 3-sulfate and to its synthetic analogs, such as 20-oxo-5ß-pregnan-3α-yl 3-hemipimelate (PAhPim). In cultured hippocampal neurons, 30 µm PAhPim had virtually no effect on NMDAR responses; however, following the Ca2+ challenge, it inhibited the responses by 62%; similarly, the Ca2+ challenge induced a 3.7-fold decrease in the steroid IC50 on recombinant GluN1/GluN2B receptors. The increase in the NMDAR sensitivity to PAhPim was dependent on three cysteines (C849, C854, and C871) located in the carboxy-terminal domain of the GluN2B subunit, previously identified to be palmitoylated (Hayashi et al., 2009). Our experiments suggested that the Ca2+ challenge induced receptor depalmitoylation, and single-channel analysis revealed that this was accompanied by a 55% reduction in the probability of channel opening. Results of in silico modeling indicate that receptor palmitoylation promotes anchoring of the GluN2B subunit carboxy-terminal domain to the plasma membrane and facilitates channel opening. Depalmitoylation-induced changes in the NMDAR pharmacology explain the neuroprotective effect of PAhPim on NMDA-induced excitotoxicity. We propose that palmitoylation-dependent changes in the NMDAR sensitivity to steroids serve as an acute endogenous mechanism that controls NMDAR activity.SIGNIFICANCE STATEMENT There is considerable interest in negative allosteric modulators of NMDARs that could compensate for receptor overactivation by glutamate or de novo gain-of-function mutations in neurodevelopmental disorders. By a combination of electrophysiological, pharmacological, and computational techniques we describe a novel feedback mechanism regulating NMDAR activity. We find that a transient rise in intracellular Ca2+ increases NMDAR sensitivity to inhibitory neurosteroids in a process dependent on GluN2B subunit depalmitoylation. These results improve our understanding of the molecular mechanisms of steroid action at the NMDAR and indeed of the basic properties of this important glutamate-gated ion channel and may aid in the development of therapeutics for treating neurologic and psychiatric diseases related to overactivation of NMDARs without affecting normal physiological functions.


Assuntos
Lipoilação/fisiologia , Neuroproteção/fisiologia , Pregnanos/farmacologia , Receptores de N-Metil-D-Aspartato/metabolismo , Animais , Células HEK293 , Hipocampo/fisiologia , Humanos , Lipoilação/efeitos dos fármacos , Masculino , Pregnanos/metabolismo , Ratos , Ratos Wistar
7.
Sci Rep ; 10(1): 12651, 2020 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-32724221

RESUMO

Cholesterol is a structural component of cellular membranes particularly enriched in synapses but its role in synaptic transmission remains poorly understood. We used rat hippocampal cultures and their acute cholesterol depletion by methyl-ß-cyclodextrin as a tool to describe the physiological role of cholesterol in glutamatergic synaptic transmission. Cholesterol proved to be a key molecule for the function of synapses as its depletion resulted in a significant reduction of both NMDA receptor (NMDAR) and AMPA/kainate receptor-mediated evoked excitatory postsynaptic currents (eEPSCs), by 94% and 72%, respectively. We identified two presynaptic and two postsynaptic steps of synaptic transmission which are modulated by cholesterol and explain together the above-mentioned reduction of eEPSCs. In the postsynapse, we show that physiological levels of cholesterol are important for maintaining the normal probability of opening of NMDARs and for keeping NMDARs localized in synapses. In the presynapse, our results favour the hypothesis of a role of cholesterol in the propagation of axonal action potentials. Finally, cholesterol is a negative modulator of spontaneous presynaptic glutamate release. Our study identifies cholesterol as an important endogenous regulator of synaptic transmission and provides insight into molecular mechanisms underlying the neurological manifestation of diseases associated with impaired cholesterol synthesis or decomposition.


Assuntos
Colesterol/farmacologia , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Neurônios/metabolismo , Terminações Pré-Sinápticas/metabolismo , Receptores de AMPA/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Transmissão Sináptica , Animais , Córtex Cerebral/efeitos dos fármacos , Córtex Cerebral/metabolismo , Ácido Glutâmico/metabolismo , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Masculino , Neurônios/efeitos dos fármacos , Terminações Pré-Sinápticas/efeitos dos fármacos , Ratos , Ratos Wistar , Sinapses/efeitos dos fármacos , Sinapses/metabolismo
8.
J Neurosci ; 40(31): 5922-5936, 2020 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-32611707

RESUMO

N-methyl-D-aspartate receptor (NMDAR) hypofunction has been implicated in several neurodevelopmental disorders. NMDAR function can be augmented by positive allosteric modulators, including endogenous compounds, such as cholesterol and neurosteroid pregnenolone sulfate (PES). Here we report that PES accesses the receptor via the membrane, and its binding site is different from that of cholesterol. Alanine mutagenesis has identified residues that disrupt the steroid potentiating effect at the rat GluN1 (G638; I642) and GluN2B (W559; M562; Y823; M824) subunit. Molecular dynamics simulation indicates that, in the absence of PES, the GluN2B M1 helix residue W559 interacts with the M4 helix residue M824. In the presence of PES, the M1 and M4 helices of agonist-activated receptor rearrange, forming a tighter interaction with the GluN1 M3 helix residues G638 and I642. This stabilizes the open-state position of the GluN1 M3 helices. Together, our data identify a likely binding site for the NMDAR-positive allosteric modulator PES and describe a novel molecular mechanism by which NMDAR activity can be augmented.SIGNIFICANCE STATEMENT There is considerable interest in drugs that enhance NMDAR function and could compensate for receptor hypofunction associated with certain neuropsychiatric disorders. Positive allosteric modulators of NMDARs include an endogenous neurosteroid pregnenolone sulfate (PES), but the binding site of PES on the NMDAR and the molecular mechanism of potentiation are unknown. We use patch-clamp electrophysiology in combination with mutagenesis and in silico modeling to describe the interaction of PES with the NMDAR. Our data indicate that PES binds to the transmembrane domain of the receptor at a discrete group of residues at the GluN2B membrane helices M1 and M4 and the GluN1 helix M3, and that PES potentiates NMDAR function by stabilizing the open-state position of the GluN1 M3 helices.


Assuntos
Pregnenolona/farmacologia , Receptores de N-Metil-D-Aspartato/efeitos dos fármacos , Alanina/genética , Animais , Sítios de Ligação , Membrana Celular/efeitos dos fármacos , Colesterol/metabolismo , Fenômenos Eletrofisiológicos , Células HEK293 , Humanos , Simulação de Dinâmica Molecular , Técnicas de Patch-Clamp , Conformação Proteica , Ratos
9.
Front Pharmacol ; 9: 1299, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30483134

RESUMO

Herein, we report the synthesis, structure-activity relationship study, and biological evaluation of neurosteroid inhibitors of N-methyl-D-aspartate receptors (NMDARs) receptors that employ an amide structural motif, relative to pregnanolone glutamate (PAG) - a compound with neuroprotective properties. All compounds were found to be more potent NMDAR inhibitors (IC50 values varying from 1.4 to 21.7 µM) than PAG (IC50 = 51.7 µM). Selected compound 6 was evaluated for its NMDAR subtype selectivity and its ability to inhibit AMPAR/GABAR responses. Compound 6 inhibits the NMDARs (8.3 receptors (8.3 ± 2.1 µM) more strongly than it does at the GABAR and AMPARs (17.0 receptors (17.0 ± 0.2 µM and 276.4 ± 178.7 µM, respectively). In addition, compound 6 (10 µM) decreases the frequency of action potentials recorded in cultured hippocampal neurons. Next, compounds 3, 5-7, 9, and 10 were not associated with mitotoxicity, hepatotoxicity nor ROS induction. Lastly, we were able to show that all compounds have improved rat and human plasma stability over PAG.

10.
Neuropharmacology ; 140: 217-232, 2018 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-30099049

RESUMO

N-methyl-d-aspartate receptors (NMDARs) are ionotropic glutamate receptors that mediate excitatory neurotransmission in the mammalian central nervous system (CNS), and their dysregulation results in the aetiology of many CNS syndromes. Several NMDAR modulators have been used successfully in clinical trials (including memantine) and NMDARs remain a promising pharmacological target for the treatment of CNS syndromes. 1,2,3,4-Tetrahydro-9-aminoacridine (tacrine; THA) was the first approved drug for Alzheimer's disease (AD) treatment. 7-methoxyderivative of THA (7-MEOTA) is less toxic and showed promising results in patients with tardive dyskinesia. We employed electrophysiological recordings in HEK293 cells and rat neurones to examine the mechanism of action of THA and 7-MEOTA at the NMDAR. We showed that both THA and 7-MEOTA are "foot-in-the-door" open-channel blockers of GluN1/GluN2 receptors and that 7-MEOTA is a more potent but slower blocker than THA. We found that the IC50 values for THA and 7-MEOTA exhibited the GluN1/GluN2A < GluN1/GluN2B < GluN1/GluN2C = GluN1/GluN2D relationship and that 7-MEOTA effectively inhibits human GluN1/GluN2A-M817V receptors that carry a pathogenic mutation. We also showed that 7-MEOTA is a "foot-in-the-door" open-channel blocker of GluN1/GluN3 receptors, although these receptors were not inhibited by memantine. In addition, the inhibitory potency of 7-MEOTA at synaptic and extrasynaptic hippocampal NMDARs was similar, and 7-MEOTA exhibited better neuroprotective activity when compared with THA and memantine in rats with NMDA-induced lesions of the hippocampus. Finally, intraperitoneal administration of 7-MEOTA attenuated MK-801-induced hyperlocomotion and pre-pulse inhibition deficit in rats. We conclude that 7-MEOTA may be considered for the treatment of diseases associated with the dysfunction of NMDARs.


Assuntos
Neurônios/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Receptores de N-Metil-D-Aspartato/antagonistas & inibidores , Tacrina/análogos & derivados , Animais , Células Cultivadas , Maleato de Dizocilpina/antagonistas & inibidores , Maleato de Dizocilpina/farmacologia , Relação Dose-Resposta a Droga , Hipocampo/efeitos dos fármacos , Humanos , Locomoção/efeitos dos fármacos , Masculino , Memantina/farmacologia , Mutação , Neurônios/fisiologia , Inibição Pré-Pulso/efeitos dos fármacos , Ratos , Receptores de N-Metil-D-Aspartato/genética , Tacrina/farmacologia
11.
Front Mol Neurosci ; 11: 110, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29681796

RESUMO

N-methyl-D-aspartate receptors (NMDARs), glutamate-gated ion channels, mediate signaling at the majority of excitatory synapses in the nervous system. Recent sequencing data for neurological and psychiatric patients have indicated numerous mutations in genes encoding for NMDAR subunits. Here, we present surface expression, functional, and pharmacological analysis of 11 de novo missense mutations of the human hGluN2B subunit (P553L; V558I; W607C; N615I; V618G; S628F; E657G; G820E; G820A; M824R; L825V) located in the pre-M1, M1, M2, M3, and M4 membrane regions. These variants were identified in patients with intellectual disability, developmental delay, epileptic symptomatology, and autism spectrum disorder. Immunofluorescence microscopy indicated that the ratio of surface-to-total NMDAR expression was reduced for hGluN1/hGluN2B(S628F) receptors and increased for for hGluN1/hGluN2B(G820E) receptors. Electrophysiological recordings revealed that agonist potency was altered in hGluN1/hGluN2B(W607C; N615I; and E657G) receptors and desensitization was increased in hGluN1/hGluN2B(V558I) receptors. The probability of channel opening of hGluN1/hGluN2B (V558I; W607C; V618G; and L825V) receptors was diminished ~10-fold when compared to non-mutated receptors. Finally, the sensitivity of mutant receptors to positive allosteric modulators of the steroid origin showed that glutamate responses induced in hGluN1/hGluN2B(V558I; W607C; V618G; and G820A) receptors were potentiated by 59-96% and 406-685% when recorded in the presence of 20-oxo-pregn-5-en-3ß-yl sulfate (PE-S) and androst-5-en-3ß-yl hemisuccinate (AND-hSuc), respectively. Surprisingly hGluN1/hGluN2B(L825V) receptors were strongly potentiated, by 197 and 1647%, respectively, by PE-S and AND-hSuc. Synaptic-like responses induced by brief glutamate application were also potentiated and the deactivation decelerated. Further, we have used homology modeling based on the available crystal structures of GluN1/GluN2B NMDA receptor followed by molecular dynamics simulations to try to relate the functional consequences of mutations to structural changes. Overall, these data suggest that de novo missense mutations of the hGluN2B subunit located in membrane domains lead to multiple defects that manifest by the NMDAR loss of function that can be rectified by steroids. Our results provide an opportunity for the development of new therapeutic neurosteroid-based ligands to treat diseases associated with hypofunction of the glutamatergic system.

12.
Sci Rep ; 6: 38449, 2016 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-27924914

RESUMO

The timing of the seasonal freeze-thaw cycle of arctic lakes affects ecological processes and land-atmosphere energy fluxes. We carried out detailed ice-phenology mapping of arctic lakes, based on daily surface-reflectance time series for 2000-2013 from MODIS at 250 m spatial resolution. We used over 13,300 lakes, area >1 km2, in five study areas distributed evenly across the circumpolar Arctic - the first such phenological dataset. All areas showed significant trends towards an earlier break-up, stronger than previously reported. The mean shift in break-up start ranged from -0.10 days/year (Northern Europe) to -1.05 days/year (central Siberia); the shift in break-up end was between -0.14 and -0.72 days/year. Finally, we explored the effect of temperature on break-up timing and compared results among study areas. The 0 °C isotherm shows the strongest relationship (r = 0.56-0.81) in all study areas. If the trend in early break-up continues, rapidly changing ice phenology will likely generate significant, arctic-wide impacts.

13.
J Neurosci ; 36(7): 2161-75, 2016 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-26888927

RESUMO

Postsynaptic N-methyl-d-aspartate receptors (NMDARs) phasically activated by presynaptically released glutamate are critical for synaptic transmission and plasticity. However, under pathological conditions, excessive activation of NMDARs by tonically increased ambient glutamate contributes to excitotoxicity associated with various acute and chronic neurological disorders. Here, using heterologously expressed GluN1/GluN2A and GluN1/GluN2B receptors and rat autaptic hippocampal microisland cultures, we show that pregnanolone sulfate inhibits NMDAR currents induced by a prolonged glutamate application with a higher potency than the NMDAR component of EPSCs. For synthetic pregnanolone derivatives substituted with a carboxylic acid moiety at the end of an aliphatic chain of varying length and attached to the steroid skeleton at C3, the difference in potency between tonic and phasic inhibition increased with the length of the residue. The steroid with the longest substituent, pregnanolone hemipimelate, had no effect on phasically activated receptors while inhibiting tonically activated receptors. In behavioral tests, pregnanolone hemipimelate showed neuroprotective activity without psychomimetic symptoms. These results provide insight into the influence of steroids on neuronal function and stress their potential use in the development of novel therapeutics with neuroprotective action. SIGNIFICANCE STATEMENT: Synaptic activation of N-methyl-d-aspartate receptors (NMDARs) plays a key role in synaptic plasticity, but excessive tonic NMDAR activation mediates excitotoxicity associated with many neurological disorders. Therefore, there is much interest in pharmacological agents capable of selectively blocking tonically activated NMDARs while leaving synaptically activated NMDARs intact. Here, we show that an endogenous neurosteroid pregnanolone sulfate is more potent at inhibiting tonically than synaptically activated NMDARs. Further, we report that a novel synthetic analog of pregnanolone sulfate, pregnanolone hemipimelate, inhibits tonic NMDAR currents without inhibiting the NMDAR component of the EPSC and shows neuroprotective activity in vivo without inducing psychomimetic side effects. These results suggest steroids may have a clinical advantage over other known classes of NMDAR inhibitors.


Assuntos
Pregnanos/farmacologia , Receptores de N-Metil-D-Aspartato/antagonistas & inibidores , Animais , Aprendizagem da Esquiva/efeitos dos fármacos , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Células HEK293 , Hipocampo/metabolismo , Humanos , Masculino , Atividade Motora/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Técnicas de Patch-Clamp , Pregnanos/química , Pregnanolona/química , Pregnanolona/farmacologia , Ratos , Ratos Wistar , Receptores de N-Metil-D-Aspartato/efeitos dos fármacos , Receptores de N-Metil-D-Aspartato/genética , Relação Estrutura-Atividade , Transmissão Sináptica/efeitos dos fármacos
14.
Sci Rep ; 5: 10935, 2015 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-26086919

RESUMO

N-methyl-D-aspartate receptors (NMDARs) mediate synaptic plasticity, and their dysfunction is implicated in multiple brain disorders. NMDARs can be allosterically modulated by numerous compounds, including endogenous neurosteroid pregnanolone sulfate. Here, we identify the molecular basis of the use-dependent and voltage-independent inhibitory effect of neurosteroids on NMDAR responses. The site of action is located at the extracellular vestibule of the receptor's ion channel pore and is accessible after receptor activation. Mutations in the extracellular vestibule in the SYTANLAAF motif disrupt the inhibitory effect of negatively charged steroids. In contrast, positively charged steroids inhibit mutated NMDAR responses in a voltage-dependent manner. These results, in combination with molecular modeling, characterize structure details of the open configuration of the NMDAR channel. Our results provide a unique opportunity for the development of new therapeutic neurosteroid-based ligands to treat diseases associated with dysfunction of the glutamate system.


Assuntos
Mutação , Pregnanolona , Receptores de N-Metil-D-Aspartato , Vestíbulo do Labirinto , Motivos de Aminoácidos , Humanos , Pregnanolona/química , Pregnanolona/metabolismo , Receptores de N-Metil-D-Aspartato/antagonistas & inibidores , Receptores de N-Metil-D-Aspartato/química , Receptores de N-Metil-D-Aspartato/genética , Receptores de N-Metil-D-Aspartato/metabolismo , Vestíbulo do Labirinto/química , Vestíbulo do Labirinto/metabolismo
15.
J Physiol ; 593(10): 2279-93, 2015 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-25651798

RESUMO

NMDA receptors (NMDARs) are glutamate-gated ion channels that mediate excitatory neurotransmission in the CNS. Although these receptors are in direct contact with plasma membrane, lipid-NMDAR interactions are little understood. In the present study, we aimed at characterizing the effect of cholesterol on the ionotropic glutamate receptors. Whole-cell current responses induced by fast application of NMDA in cultured rat cerebellar granule cells (CGCs) were almost abolished (reduced to 3%) and the relative degree of receptor desensitization was increased (by seven-fold) after acute cholesterol depletion by methyl-ß-cyclodextrin. Both of these effects were fully reversible by cholesterol repletion. By contrast, the responses mediated by AMPA/kainate receptors were not affected by cholesterol depletion. Similar results were obtained in CGCs after chronic inhibition of cholesterol biosynthesis by simvastatin and acute enzymatic cholesterol degradation to 4-cholesten-3-one by cholesterol oxidase. Fluorescence anisotropy measurements showed that membrane fluidity increased after methyl-ß-cyclodextrin pretreatment. However, no change in fluidity was observed after cholesterol enzymatic degradation, suggesting that the effect of cholesterol on NMDARs is not mediated by changes in membrane fluidity. Our data show that diminution of NMDAR responses by cholesterol depletion is the result of a reduction of the open probability, whereas the increase in receptor desensitization is the result of an increase in the rate constant of entry into the desensitized state. Surface NMDAR population, agonist affinity, single-channel conductance and open time were not altered in cholesterol-depleted CGCs. The results of our experiments show that cholesterol is a strong endogenous modulator of NMDARs.


Assuntos
Cerebelo/citologia , Cerebelo/fisiologia , Colesterol Oxidase/farmacologia , Colesterol/fisiologia , Receptores de N-Metil-D-Aspartato/efeitos dos fármacos , Receptores de N-Metil-D-Aspartato/fisiologia , Sinvastatina/farmacologia , Animais , Anticolesterolemiantes/farmacologia , Células Cultivadas , Cerebelo/efeitos dos fármacos , Colesterol/deficiência , Fenômenos Eletrofisiológicos/fisiologia , Feminino , Masculino , Fluidez de Membrana/efeitos dos fármacos , Fluidez de Membrana/fisiologia , Lipídeos de Membrana/fisiologia , Condução Nervosa/fisiologia , Técnicas de Patch-Clamp , Ratos , Ratos Wistar , Transmissão Sináptica/fisiologia , beta-Ciclodextrinas/farmacologia
16.
Endocrinology ; 154(2): 819-30, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23183182

RESUMO

Acute 17ß-estradiol (E2) signaling in the brain is mediated by extranuclear estrogen receptors. Here we used biochemical methods to investigate the distribution, posttranslational modification, and E2 regulation of estrogen receptor-α (ERα) in synaptosomal fractions isolated by differential centrifugation from the adult female rat hippocampus. We find that ERα is concentrated presynaptically and is highly enriched with synaptic vesicles. Immunoisolation of vesicles using vesicle subtype-specific markers showed that ERα is associated with both glutamate and γ-aminobutyric acid-containing neurotransmitter vesicles as well as with some large dense core vesicles. Experiments using broad spectrum and residue-specific phosphatases indicated that a portion of ERα in synaptosomal fractions is phosphorylated at serine/threonine residues leading to a mobility shift in SDS-PAGE and creating a double band on Western blots. The phosphorylated form of ERα runs in the upper of the two bands and is particularly concentrated with synaptic vesicles. Finally, we used E2 with or without the acyl protein thioesterase 1 inhibitor, Palmostatin B, to show that 20 min of E2 treatment of hippocampal slices depletes ERα from the synaptosomal membrane by depalmitoylation. We found no evidence that E2 regulates phosphorylation of synaptosomal ERα on this time scale. These studies begin to fill the gap between detailed molecular characterization of extranuclear ERα in previous in vitro studies and acute E2 modulation of hippocampal synapses in the adult brain.


Assuntos
Receptor alfa de Estrogênio/metabolismo , Hipocampo/metabolismo , Vesículas Sinápticas/metabolismo , Animais , Estradiol/farmacologia , Feminino , Ácido Glutâmico/metabolismo , Fosforilação , Processamento de Proteína Pós-Traducional , Ratos , Ratos Sprague-Dawley , Tioléster Hidrolases/antagonistas & inibidores
17.
J Neurosci ; 30(48): 16137-48, 2010 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-21123560

RESUMO

Although recent evidence suggests that the hippocampus is a source of 17ß-estradiol (E2), the physiological role of this neurosteroid E2, as distinct from ovarian E2, is unknown. One likely function of neurosteroid E2 is to acutely potentiate excitatory synaptic transmission, but the mechanism of this effect is not well understood. Using whole-cell voltage-clamp recording of synaptically evoked EPSCs in adult rat hippocampal slices, we show that, in contrast to the conclusions of previous studies, E2 potentiates excitatory transmission through a presynaptic mechanism. We find that E2 acutely potentiates EPSCs by increasing the probability of glutamate release specifically at inputs with low initial release probability. This effect is mediated by estrogen receptor ß (ERß) acting as a monomer, whereas ERα is not required. We further show that the E2-induced increase in glutamate release is attributable primarily to increased individual vesicle release probability and is associated with higher average cleft glutamate concentration. These two findings together argue strongly that E2 promotes multivesicular release, which has not been shown before in the adult hippocampus. The rapid time course of acute EPSC potentiation and its concentration dependence suggest that locally synthesized neurosteroid E2 may activate this effect in vivo.


Assuntos
Estradiol/administração & dosagem , Potenciais Pós-Sinápticos Excitadores/fisiologia , Hipocampo/fisiologia , Terminações Pré-Sinápticas/fisiologia , Transmissão Sináptica/fisiologia , Animais , Estradiol/fisiologia , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Feminino , Hipocampo/efeitos dos fármacos , Terminações Pré-Sinápticas/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Transmissão Sináptica/efeitos dos fármacos , Fatores de Tempo
18.
J Neurosci Methods ; 188(2): 226-34, 2010 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-20170675

RESUMO

In the process of characterizing a custom-made affinity-purified antiserum for estrogen receptor beta (ERbeta), ck5912, we used a number of common tests for specificity of ck5912 along with that of 8 commercially available ERbeta antisera: Affinity Bioreagents PA1-310B, Invitrogen D7N, Upstate 06-629, Santa Cruz H150, Y19, L20, 1531, and Abcam 9.88. We tested their recognition of recombinant ERbeta (rERbeta) versus rERalpha, ERbeta versus ERalpha transfected into cell lines, as well as labeling in wildtype (WT) versus estrogen receptor beta knockout (betaERKO) and null (ERbeta(ST)(L-/L-)) mouse ovary, hypothalamus, and hippocampus. To our surprise, we found that while most of these antisera passed some tests, giving the initial impression of specificity, western blot analysis showed that all of them recognized apparently identical protein bands in WT, betaERKO and ERbeta(ST)(L-/L-) tissues. We share these results with the goal of helping other researchers avoid pitfalls in interpretation that could come from use of these ERbeta antisera.


Assuntos
Anticorpos/imunologia , Anticorpos/isolamento & purificação , Especificidade de Anticorpos/imunologia , Receptor beta de Estrogênio/imunologia , Imuno-Histoquímica/métodos , Animais , Anticorpos/análise , Western Blotting , Encéfalo/citologia , Encéfalo/imunologia , Encéfalo/metabolismo , Linhagem Celular , Receptor beta de Estrogênio/genética , Feminino , Marcação de Genes , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Ovário/citologia , Ovário/imunologia , Ovário/metabolismo , Proteínas Recombinantes de Fusão/imunologia , Transfecção
19.
J Neurosci ; 29(5): 1457-68, 2009 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-19193892

RESUMO

About one-third of women with epilepsy have a catamenial seizure pattern, in which seizures fluctuate with the menstrual cycle. Catamenial seizures occur more frequently when the ratio of circulating estradiol to progesterone is high, suggesting that estradiol is proconvulsant. We used adult female rats to test how estradiol-induced suppression of GABAergic inhibition in the hippocampus affects behavioral seizures induced by kainic acid. As expected, estradiol decreased the latency to initiate seizures, indicating increased seizure susceptibility. At the same time, however, estradiol also shortened the duration of late-stage seizures, indicating decreased seizure severity. Additional analyses showed that the decrease in seizure severity was attributable to greater release of the anticonvulsant neuropeptide, neuropeptide Y (NPY). First, blocking hippocampal NPY during seizures eliminated the estradiol-induced decrease in seizure duration. Second, light and electron microscopic studies indicated that estradiol increases the potentially releasable pool of NPY in inhibitory presynaptic boutons and facilitates the release of NPY from inhibitory boutons during seizures. Finally, the presence of estrogen receptor-alpha on large dense-core vesicles (LDCVs) in the hippocampus suggests that estradiol could facilitate neuropeptide release by acting directly on LDCVs themselves. Understanding how estradiol regulates NPY-containing LDCVs could point to molecular targets for novel anticonvulsant therapies.


Assuntos
Estradiol/farmacologia , Estradiol/uso terapêutico , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Neuropeptídeo Y/metabolismo , Convulsões/prevenção & controle , Animais , Receptor alfa de Estrogênio/metabolismo , Receptor alfa de Estrogênio/fisiologia , Feminino , Técnicas In Vitro , Ratos , Ratos Sprague-Dawley , Tempo de Reação/efeitos dos fármacos , Tempo de Reação/fisiologia , Vesículas Secretórias/metabolismo , Convulsões/metabolismo
20.
J Neurosci ; 27(8): 2102-11, 2007 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-17314305

RESUMO

Although the classical mechanism of estrogen action involves activation of nuclear transcription factor receptors, estrogen also has acute effects on neuronal signaling that occur too rapidly to involve gene expression. These rapid effects are likely to be mediated by extranuclear estrogen receptors associated with the plasma membrane and/or cytoplasmic organelles. Here we used a combination of serial-section electron microscopic immunocytochemistry, immunofluorescence, and Western blotting to show that estrogen receptor-alpha is associated with clusters of vesicles in perisomatic inhibitory boutons in hippocampal CA1 and that estrogen treatment mobilizes these vesicle clusters toward synapses. Estrogen receptor-alpha is present in approximately one-third of perisomatic inhibitory boutons, and specifically in those that express cholecystokinin, not parvalbumin. We also found a high degree of extranuclear estrogen receptor-alpha colocalization with neuropeptide Y. Our results suggest a novel mode of estrogen action in which a subset of vesicles within a specific population of inhibitory boutons responds directly to estrogen by moving toward synapses. The mobilization of these vesicles may influence acute effects of estrogen mediated by estrogen receptor-alpha signaling at inhibitory synapses.


Assuntos
Receptor alfa de Estrogênio/metabolismo , Estrogênios/farmacologia , Hipocampo/fisiologia , Inibição Neural/fisiologia , Terminações Pré-Sinápticas/fisiologia , Vesículas Sinápticas/fisiologia , Animais , Western Blotting , Núcleo Celular/metabolismo , Colecistocinina/metabolismo , Feminino , Imunofluorescência , Glutamato Descarboxilase/metabolismo , Hipocampo/metabolismo , Hipocampo/ultraestrutura , Imuno-Histoquímica , Técnicas In Vitro , Microscopia Eletrônica , Neurônios/metabolismo , Neuropeptídeo Y/metabolismo , Parvalbuminas/metabolismo , Terminações Pré-Sinápticas/metabolismo , Terminações Pré-Sinápticas/ultraestrutura , Ratos , Ratos Sprague-Dawley , Vesículas Sinápticas/efeitos dos fármacos , Distribuição Tecidual
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...